SONY

MambaPEFT: Exploring Parameter-EfficientFine-Tuning for Mamba Masakazu Yoshimura*, Teruaki Hayashi*, and Yota Maeda (Sony Group Corporation) *equally contributed

Introduction

Mamba is successful in various fields Investigate, improve, and propose

However, Transformer's eco-system is huge. Once a large Transformer model is created, it can be efficiently adapted to various tasks with parameter-efficient fine-tuning (PEFT).

PEFT for Mamba is needed to replace Transformer's eco-system.

Our contribution

- Check the availability of existing PEFT methods to Mamba
- Optimize them to Mamba with extensive exploration
- Propose PEFT methods specific to Mamba

Partial tuning - tuning small parameters

A, D, conv1d, cls_embed, bias, ...

Additive method - add parameters

affix-tuning, additional-scan, ...

Reparameterization method LoRA, partial-LoRA

Proposed PEFT methods specific to Mamba

Affix-tuning

Add tokens before causal conv1d and discard after selective scan

Additional-scan

add learnable dimensions to the hidden state in SSM

Overview

20 variations of 7 PEFT methods

(c) Additional-scan for Mamba Discard **Selective Scan** SSM Linear_{dt_proj} **D** B С d Linear_{x_proj}

Evaluation & Findings

Vtab-1K (vision, 1K training data)

Model	Method	#Params (K)	Avg.
ViT-S	Scratch	21,704	26.20
	Full	21,704	53.47
	Linear Probing	9	51.74
	FacT-TK	16	66.96
	LoRA	628	68.68
	Adaptformer	333	68.97
	SPT-LoRA	414	69.38
	Adapter+	122	69.87
	Scratch	25,450	25.42
	Full	25,450	47.08
Vim-S	Linear Probing	9	52.75
	Conv1d-tuning	156	69.09
	Prompt-tuning (w/o p	$\overline{\text{proj}}$ $\overline{12}$	56.77
	Prompt-tuning	307	62.54
	Affix-tuning (w/o pro	oj) 230	65.04
	Affix-tuning	117,000	70.29
	Additional-scan	672	68.65
	ParallelAdapter	663	70.96
	LoRA(out_proj)	2,663	$\overline{7}\overline{1.12}$
	LoRA(in_proj)	1,483	71.25
	$LoRA_p(X)$	1,778	71.52
	- Hybrid (w/ proj)	117,236	72.05
	Hybrid (w/o proj)	1,044	<u>71.80</u>

Commonsense (language, 170K data)

Model	Method	#Params(%)	Avg.
Duthia 160M	Full	100	42.0
Pythia 100M	LoRA	0.72	41.6
	Full	- 100	43.8
Mamba 130M	SLL LORA	1.45	42.7
Walloa 150W	Additional-scan	0.51	42.7
	Affix-tuning (w/o pr	oj) 0.17	40.6
	Affix-tuning	64.64	43.2
	LoRA(in_proj)	2.23	42.8
	$LoRA_p(X)$	2.67	43.7
Duthia 1 4D	Full	100	50.5
Pyulla 1.4D	LoRA	0.44	50.5
	Full		53.0
	SLL LoRA	4.64	52.7
Mamba 1 /B	Additional-scan	0.26	53.5
Mainua 1.4D	Affix-tuning (w/o pr	oj) 0.09	53.9
	LoRA(in_proj)	1.13	52.6
	$LoRA_p(X)$	1.36	53.7

(1) Mamba benefits from PEFT (6) We should choose a suitable more than Transformers **PEFT method depending on the** computational budget larger improvement

from full fine-tuning

(2) LoRA_p(X) is effective with limited data

apply LoRA on the partial weight of in_proj layer to generate feature X

(3) Additional-scan is effective with large data

(4) Affix-tuning is effective for large Mamba models

(5) LoRA_p(X) is enough, and adding LoRA to other layers is harmful

different from Transformers

Method	Rank	A
LoRA(in_proj + out_proj)	8	71
LoRA(in_proj + out_proj)	16	70
LoRA(in_proj + out_proj)	32	69
LoRA(ALL)	8	71
LoRA(ALL)	16	70
LoRA(ALL)	32	68
$LoRA_p(X)$	64	71

The Code is available!

(7) PEFT for Mamba can be improved by adding more parameters

.33 .74 Vim-S 1.52 VTab Avg.

(8) In Hybrid PEFT, simply combining individually highperformance methods, as many previous works did, is inefficient