APPENDIX A. THEORETICAL RESULT AND ITS PROOF
A-1. Preliminaries

Let p* and p'¢' be the source distribution and target distribution, respectively on R? of dimension d. We consider the Ornstein-Uhlenbeck
(OU) process® on an interval [0, T

dzy = —z¢dt + V2dw,, 0 ~ p°, 6)
where ¢ € {src, tgt} and {w;}+co,7] is a Wiener process. We denote p; as the marginal density of the stochastic process {:}+c[o, 1) given

by Eq. (6). It associates with the following PF-ODE [28]

%zt =z, + Vlogps (w:), where o € {src, tgt}. )

When t = 0, it represents the clean data space (where p*™ and p'®' are supported on), and when ¢ = T, it represents the latent noisy space.
For ¢ € {src, tgt}, diffusion model D (x,t) is trained to approximate V log p; () and leads to the following empirical PF-ODE

d . . .
El‘t =T+ Dg($t7t). (8)

Let p and ¢ be two densities defined on R%. We define the total variation distance between p and g as

TV(p.q) :== %/lp(x) —q(z)| dz.

Starting from z* ~ p*°, the following ODEs solving defines a cycle manner procedure

#e" — ODESolve(z™; D§°,0,T),
#* = ODESolve(2™™"; DE', T, 0), "
and then

#"" = ODESolve(2'; DI£',0,T),
& = ODESolve(2™; D3°, T, 0), (10)

DDIB proves the cycle consistency property that £ = 2°° but assumes perfect diffusion model training and no ODE discretization
errors, which are unrealistic. In Theorem 1°, we establish distributional cycle consistency by accounting for diffusion model training errors
and ODESolve discretization errors.

A-2. Assumptions

We list up the assumptions which are mostly similar to those in [36].
Assumption A (Compactly supported densities). Both p™ and p*®' are compactly supported on a compact set in R%

Assumption B (Training accuracy of diffusion model). Let epy > 0. For o € {src, tgt},

T
[ e[ IDi e t) — Viogpt o3 ]t <
0

Assumption C (Smoothness of diffusion model). For o € {src, tgt}, assume that D§(-,t) is €*(R) for all t € [0,T). That is, it is twice
continuously differentiable. Additionally, we assume that there is a constant Ly > 0 so that

‘|Dg('vt)|‘<g2(]gd) < L.
We denote L := fOT Lidt and assume that L < co.

A-3. Full Statement of Theorem 1 and Its Proof
To ensure precision, we slightly modify the notations used in the main manuscript. We present the theorem with time discretization,
corresponding one-to-one with variance discretization [29]. Let ty—1 =1 > --- > t;41 > t; > -+ - > to = 0 be the discretization timestep
on [0,77], and define h := max;c{o,... n—1} [tit1 — til.
Starting from z() ~ p*™, let p™™ be the oracle density obtained by the forward-in-time PE-ODE (Eq. (7) with ¢ = src), and p*™ be
the pushforward density obtained by solving the ODE (Eq. (8) with ¢ = src) numerically:
&) = ODESolve(z'¥; D§*,0,T), z'* ~ p™.

Now starting from the noisy latent space, let p**' be the density obtained by solving the ODE (Eq. (8) with ¢ = tgt), starting from OB ﬁlalem:
#® = ODESolve("; DE, T,0), &0 ~ p.

We now present the full statement of Theorem 1 along with its proof.

2The statement and argument may be extended to a more general diffusion process. However, we leave it as a future work.



Theorem 1’ (Distributional Cycle Consistency). Consider the ODE solvers are k"-order RK method. Under Assumptions A, B, and C, the
total variation distance TV between p'*' and p'®' is bounded by:

V(™. p*) < Olepm) + O(h").

Here, < and O(-) conceals a multiplication constant depending only on dimensionality d, p® with o € {src,tgt}, and the pre-defined
Runge—Kutta matrix [37].

Proof. Applying [36]’s Theorem 3.10 and its Remark C.2 backward in time (from 7" to 0) to Eqgs. (8) and (7) with ¢ = tgt, we obtain
TV (ﬁtgl7ptgt) 5 TV (platent7platent) + O(eDM) + O(hri)
Now applying the same theorem but forward in time (from 0 to T to Egs. (8) and (7) with ¢ = src, we obtain
TV(ﬁlalem’plalenl) 5 O(EDM) + O(hm)’

SIC

as we start from the same initial distribution p*™°. Combining these two inequalities, we derive the desired bound:

TV(p*,p*) < O(epm) + O(h").
O

We note that a sample-wise bound (instead of a distributional bound) can also be derived by analyzing the RK-solver in detail. Additionally,
the bounds in Theorem 1° can be further refined using advanced techniques, but we do not pursue this overly complex mathematical analysis
in this work.



