
APPENDIX A. THEORETICAL RESULT AND ITS PROOF

A-1. Preliminaries
Let psrc and ptgt be the source distribution and target distribution, respectively on Rd of dimension d. We consider the Ornstein-Uhlenbeck

(OU) process2 on an interval [0, T ]

dxt = �xtdt+
p
2dwt, x0 ⇠ p⇧, (6)

where ⇧ 2 {src, tgt} and {wt}t2[0,T ] is a Wiener process. We denote pt as the marginal density of the stochastic process {xt}t2[0,T ] given
by Eq. (6). It associates with the following PF-ODE [28]

d
dt

xt = xt +r log p⇧t (xt), where ⇧ 2 {src, tgt}. (7)

When t = 0, it represents the clean data space (where psrc and ptgt are supported on), and when t = T , it represents the latent noisy space.
For ⇧ 2 {src, tgt}, diffusion model D⇧

✓(x, t) is trained to approximate r log p⇧t (x) and leads to the following empirical PF-ODE

d
dt

x̂t = x̂t +D⇧
✓(x̂t, t). (8)

Let p and q be two densities defined on Rd. We define the total variation distance between p and q as

TV(p, q) :=
1
2

Z
|p(x)� q(x)| dx.

Starting from xsrc
⇠ psrc, the following ODEs solving defines a cycle manner procedure

x̂latent = ODESolve(xsrc;Dsrc
✓ , 0, T ),

x̂tgt = ODESolve(x̂latent;Dtgt
✓ , T, 0),

(9)

and then
ˆ̂xlatent = ODESolve(x̂tgt;Dtgt

✓ , 0, T ),

ˆ̂xsrc = ODESolve(ˆ̂xlatent;Dsrc
✓ , T, 0),

(10)

DDIB proves the cycle consistency property that ˆ̂xsrc = xsrc, but assumes perfect diffusion model training and no ODE discretization
errors, which are unrealistic. In Theorem 1’, we establish distributional cycle consistency by accounting for diffusion model training errors
and ODESolve discretization errors.

A-2. Assumptions
We list up the assumptions which are mostly similar to those in [36].

Assumption A (Compactly supported densities). Both psrc and ptgt are compactly supported on a compact set in Rd.

Assumption B (Training accuracy of diffusion model). Let ✏DM > 0. For ⇧ 2 {src, tgt},
Z T

0

Ext⇠pt(x)

h
kD⇧

✓(xt, t)�r log p⇧t (xt)k
2
2

i
dt  ✏2DM

Assumption C (Smoothness of diffusion model). For ⇧ 2 {src, tgt}, assume that D⇧
✓(·, t) is C 2(Rd) for all t 2 [0, T ]. That is, it is twice

continuously differentiable. Additionally, we assume that there is a constant Lt > 0 so that

kD⇧
✓(·, t)kC2(Rd)  Lt.

We denote L :=
R T

0
Ltdt and assume that L < 1.

A-3. Full Statement of Theorem 1 and Its Proof
To ensure precision, we slightly modify the notations used in the main manuscript. We present the theorem with time discretization,

corresponding one-to-one with variance discretization [29]. Let tN�1 = T > · · · > ti+1 > ti > · · · > t0 = 0 be the discretization timestep
on [0, T ], and define h := maxi2{0,··· ,N�1} |ti+1 � ti|.

Starting from x(s)
⇠ psrc, let platent be the oracle density obtained by the forward-in-time PF-ODE (Eq. (7) with ⇧ = src), and p̂latent be

the pushforward density obtained by solving the ODE (Eq. (8) with ⇧ = src) numerically:

x̂(l) = ODESolve(x(s);Dsrc
✓ , 0, T ), x(s)

⇠ psrc.

Now starting from the noisy latent space, let p̂tgt be the density obtained by solving the ODE (Eq. (8) with ⇧ = tgt), starting from x̂(l)
⇠ p̂latent:

x̂(t) = ODESolve(x̂(l);Dtgt
✓ , T, 0), x̂(l)

⇠ p̂latent.

We now present the full statement of Theorem 1 along with its proof.

2The statement and argument may be extended to a more general diffusion process. However, we leave it as a future work.



Theorem 1’ (Distributional Cycle Consistency). Consider the ODE solvers are th-order RK method. Under Assumptions A, B, and C, the
total variation distance TV between p̂tgt and ptgt is bounded by:

TV
�
p̂tgt, ptgt� . O(✏DM) +O(h).

Here, . and O(·) conceals a multiplication constant depending only on dimensionality d, p⇧ with ⇧ 2 {src, tgt}, and the pre-defined
Runge–Kutta matrix [37].

Proof. Applying [36]’s Theorem 3.10 and its Remark C.2 backward in time (from T to 0) to Eqs. (8) and (7) with ⇧ = tgt, we obtain

TV
�
p̂tgt, ptgt� . TV

�
p̂latent, platent�+O(✏DM) +O(h).

Now applying the same theorem but forward in time (from 0 to T ) to Eqs. (8) and (7) with ⇧ = src, we obtain

TV
�
p̂latent, platent� . O(✏DM) +O(h),

as we start from the same initial distribution psrc. Combining these two inequalities, we derive the desired bound:

TV
�
p̂tgt, ptgt� . O(✏DM) +O(h).

We note that a sample-wise bound (instead of a distributional bound) can also be derived by analyzing the RK-solver in detail. Additionally,
the bounds in Theorem 1’ can be further refined using advanced techniques, but we do not pursue this overly complex mathematical analysis
in this work.


