Pruning Information¶
- class model_compression_toolkit.pruning.PruningInfo(pruning_masks, importance_scores)¶
PruningInfo stores information about a pruned model, including the pruning masks and importance scores for each layer. This class acts as a container for accessing pruning-related metadata.
- Parameters:
pruning_masks (Dict[BaseNode, np.ndarray]) – Stores the pruning masks for each layer. A pruning mask is an array where each element indicates whether the corresponding channel or neuron has been pruned (0) or kept (1).
importance_scores (Dict[BaseNode, np.ndarray]) – Stores the importance scores for each layer. Importance scores quantify the significance of each channel in the layer.
- property importance_scores: Dict[BaseNode, ndarray]¶
The importance scores for each layer.
- Returns:
The importance scores.
- Return type:
Dict[BaseNode, np.ndarray]
- Return type:
Dict
[BaseNode
,ndarray
]
- property pruning_masks: Dict[BaseNode, ndarray]¶
The pruning masks for each layer.
- Returns:
The pruning masks.
- Return type:
Dict[BaseNode, np.ndarray]
- Return type:
Dict
[BaseNode
,ndarray
]