C++ Command Line Interface ========================= Nnabla has c++ version's command line interface utility which can do train, forward(inference). Using this command line interface, developers can run train and infer without any python environment. .. code-block:: none usage: nbla (infer|dump|train) Basic functions ~~~~~~~~~~~~~~~ Forward -------- .. code-block:: none usage: nbla infer -e EXECUTOR [-b BATCHSIZE] [-o OUTPUT] input_files ... arguments: -e EXECUTOR EXECUTOR is the name of executor network. input_files input_file must be one of followings. *.nnp : Network structure and parameter. *.nntxt : Network structure in prototxt format. *.prototxt : Same as nntxt. *.h5 : Parameters in h5 format. *.protobuf : Network structure and parameters in binary. *.bin : Input data. optional arguments: -b BATCHSIZE batch size for the input data. -o OUTPUT the filename pattern of output file, default output to stdout. example: Infer using LeNet_input.bin as input, LeNet_output_0.bin as output: nbla infer -e Executor -b 1 LeNet.nnp LeNet_input.bin -o LeNet_output Infer and output the result to console: nbla infer -e Executor -b 1 LeNet.nnp LeNet_input.bin Dump ------- .. code-block:: none usage: nbla dump input_files ... arguments: input_files input_files must be one of *.nnp, *.nntxt, prototxt, h5, protobuf example: Show network information by dump command: nbla dump LeNet.nnp The output looks like: .. code-block:: none This configuration has 1 executors. Executor No.0 Name [Executor] Using default batch size 64 . Inputs Input No.0 Name [x] Shape ( 64 1 28 28 ) Outputs Output No.0 Name [y'] Shape ( 64 10 ) Finished Train ----- .. code-block:: none usage: nbla train input_file arguments: input_file input_file must be *.nnp