Get Resource Utilization information for PyTorch Models¶
- model_compression_toolkit.core.pytorch_resource_utilization_data(in_model, representative_data_gen, core_config=CoreConfig(), target_platform_capabilities=PYTORCH_DEFAULT_TPC)¶
Computes resource utilization data that can be used to calculate the desired target resource utilization for mixed-precision quantization. Builds the computation graph from the given model and target platform capabilities, and uses it to compute the resource utilization data.
- Parameters:
in_model (Model) – PyTorch model to quantize.
representative_data_gen (Callable) – Dataset used for calibration.
core_config (CoreConfig) – CoreConfig containing parameters for quantization and mixed precision
target_platform_capabilities (TargetPlatformCapabilities) – TargetPlatformCapabilities to optimize the PyTorch model according to.
- Returns:
A ResourceUtilization object with total weights parameters sum and max activation tensor.
Examples
Import a Pytorch model:
>>> from torchvision import models >>> module = models.mobilenet_v2()
Create a random dataset generator:
>>> import numpy as np >>> def repr_datagen(): yield [np.random.random((1, 3, 224, 224))]
Import mct and call for resource utilization data calculation:
>>> import model_compression_toolkit as mct >>> ru_data = mct.core.pytorch_resource_utilization_data(module, repr_datagen)
- Return type: