Graph Converters
- class nnabla.experimental.graph_converters.GraphConverter(modifiers=[])[source]
Convert a graph with the modifiers by traversing from output variables.
- convert(o)[source]
- Parameters:
o (list of
nnabla.Variable) – Output variables.
- class nnabla.experimental.graph_converters.FunctionModifier[source]
Base class of modifiers.
The
modifymethod is called for a function with inputs in a graph topological order when you call the GraphConverter(<modifiers>).convert(<root variable>) method.- finish_up()[source]
Finish the very time function modification.
Clean up the internal modifier states.
- Parameters:
None –
- Returns:
None
- get_parameter_scope(v)[source]
Get the parameter name corresponding to v
- Parameters:
v (
nnabla.Variable) – NNabla Variable Object.- Returns:
Scope name
- Return type:
- modify(f, inputs)[source]
Modify the function.
Implement this method in a sub class to modify a function.
Examples:
class ReLUToLeakyReLUModifier(FunctionModifier): def __init__(self): super(ReLUToLeakyReLUModifier, self).__init__() def modify(self, f, inputs): if f.info.type_name == 'ReLU': x = inputs[0] return F.leaky_relu(x)
This examples is a simple case since the network topological order does not change. In GraphConverter, we expect the modify method is called along the original network topological order not the modified order. In such a complex case, see themodify method of
BatchNormalizationFoldingModifierInneras a reference.- Parameters:
f (
nnabla.function.Function) – NNabla function object.inputs (list of
Variable) – New inputs tof. This may be modified one or the same as f.inputs.
- Returns:
Variableor list ofVariable.
Function Modifiers
- class nnabla.experimental.graph_converters.BatchNormalizationFoldingModifier(opposite=False, channel_last=False)[source]
Single
Convolution -> BatchNormalizationpass is folded into oneConvolution.If there is a
Convolution -> BatchNormalizationpass, fold the batch normalization parameters to the kernel and bias (if it exists) of the preceding convolution, then skip the batch normalization following the convolution.Supported folding functions:
Convolution,Deconvolution,Affine.Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.BatchNormalizationFoldingModifier()] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.AddBiasModifier[source]
Add bias to
Convolutionin BatchNormalization folding case if it doesn’t have bias.Supported folding functions:
Convolution,Deconvolution,Affine.Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.AddBiasModifier()] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.BatchNormalizationFoldingModifierInner(channel_last=False)[source]
Single
Convolution -> BatchNormalizationpass is folded into oneConvolution.If there is a
Convolution -> BatchNormalizationpass, fold the batch normalization parameters to the kernel and bias (if it exists) of the preceding convolution, then skip the batch normalization following the convolution.Supported folding functions:
Convolution,Deconvolution,Affine.
- class nnabla.experimental.graph_converters.BatchNormalizationFoldingOppositeModifierInner(channel_last=False)[source]
Single
BatchNormalization -> Convolutionpass is folded into oneConvolution.If there is a
BatchNormalization -> Convolutionpass, fold the batch normalization parameters to the kernel and bias (if it exists) of the preceding convolution, then skip the batch normalization following the convolution.Supported folding functions:
Convolution,Deconvolution,Affine.
- class nnabla.experimental.graph_converters.BatchNormalizationSelfFoldingModifier(name='bn-self-folding')[source]
The parameters of the batch normalization replaced simple scale and bias.
- Parameters:
name (
str) – Prefix of the parameter scope.
Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.BatchNormalizationSelfFoldingModifier()] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.FusedBatchNormalizationModifier[source]
Block
BatchNormalization -> Add2 -> Non-Linearpass is fused into oneFusedBatchNormalization.If there is a block
BatchNormalization -> Add2 -> Non-Linearpass, remove all the block functions and replace the whole block toFusedBatchNormalization.Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.FusedBatchNormalizationModifier()] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.UnfusedBatchNormalizationModifier[source]
Unfuse
FusedBatchNormalizationtoBatchNormalization -> Add2 -> Non-Linearblock.If there is a
FusedBatchNormalizationpass, remove the fused batch normalization and replace it with the blockBatchNormalization -> Add2 -> Non-Linear.Supported Non-Linear functions:
reluExamples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.UnfusedBatchNormalizationModifier()] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.ChannelLastModifier(inputs, inputs_cl=None)[source]
Convert graph shape from Channel first (NCHW) to Channel last (NHWC) format.
Supported functions:
Convolution,Deconvolution,BatchNormalization,MaxPooling,AveragePooling,SumPooling,Unpooling,Concatenate- Parameters:
Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.ChannelLastModifier(<inputs of pred>)] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.ChannelFirstModifier(inputs, inputs_cf=None)[source]
Convert graph shape from Channel last (NHWC) to Channel first (NCHW) format.
Supported functions:
Convolution,Deconvolution,BatchNormalization,MaxPooling,AveragePooling,SumPooling,Unpooling,Concatenate- Parameters:
Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.ChannelFirstModifier(<inputs of pred>)] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.RemoveFunctionModifier(rm_funcs=[])[source]
Remove specified function layer(s) from a graph.
A convenient converter when one or more functions in an existing graph needs to be removed. This converter remove specified function(s) without recreating a new graph from scratch.
- Parameters:
rm_funcs (list of
str) – list of function name
Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.RemoveFunctionModifier(rm_funcs=['BatchNormalization', 'MulScalar'])] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.BatchNormBatchStatModifier[source]
Change
batch_stattoFalse. Supported functions:BatchNormalization,FusedBatchNormalization,SyncBatchNormalization.Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.BatchNormBatchStatModifier()] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.TestModeModifier(rm_funcs=[])[source]
This converter combines BatNormBatchStateModifier and RemoveFunctionModifer. It changes
batch_stattoFalse. Supported functions:BatchNormalization,FusedBatchNormalization,SyncBatchNormalization.Functions that specified
rm_funcswill be removed from a graph.- Parameters:
rm_funcs (list of
str) – list of function name
Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.TestModeModifier(rm_funcs=['MulScalar'])] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.IdentityModifier(inputs={}, copy_value=False)[source]
All functions are replaced to the same
newfunction.- Parameters:
inputs (
dict) – Input variable mapping from the original input to another input. Default is the empty dictionary, so the new graph shares the original inputs.
Examples:
pred = Model(...) x = nn.Variable(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.IdentityModifier({x0: x1})] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.NoGradModifier[source]
All functions are replaced to the same
newfunction.- Parameters:
inputs (
dict) – Input variable mapping from the original input to another input. Default is the empty dictionary, so the new graph shares the original inputs.
Examples:
pred = Model(...) x = nn.Variable(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.NoGradModifier()] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)
- class nnabla.experimental.graph_converters.PruningModifier(pruning_threshold, functions_to_prune=('Convolution', 'Deconvolution', 'DepthwiseConvolution', 'DepthwiseDeconvolution', 'Affine'), channel_last=False)[source]
Use
PruningModifierto prune the small weight value to 0. The pruning is channel-wise. Using the channel-wise L2 norm to represent the degree of sparsity. If the L2 norm less than the threshold provided, all the value of this channel will be set to 0.Supported pruning functions:
Convolution,Deconvolution,DepthwiseConvolution, ‘DepthwiseDeconvolution’, ‘Affine’Examples:
pred = Model(...) import nnabla.experimental.graph_converters as GC modifiers = [GC.PruningModifier(pruning_threshold=0.1)] gc = GC.GraphConverter(modifiers) pred = gc.convert(pred)